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Abstract
Existing distributed storage systems do not meet the needs of
real-time interactive apps. These apps feature small groups of
users making concurrent modifications, tight responsiveness
bounds, and wide-area distribution. As a result, they need
a storage system that provides simultaneous access to mul-
tiple versions of shared state, where the versions trade off
consistency and staleness, and there are versions represent-
ing the extreme ends of the consistency/staleness spectrum.
We present Hercules, a distributed storage system that meets
these needs using client-side caching. Hercules uses batching
to preserve performance in high-throughput scenarios and
includes recovery protocols to maintain liveness in the face
of client-side failures. We experimentally evaluate Hercules’s
performance and failure tolerance, and we present a set of
example apps that demonstrate the versatility of Hercules’s
programming model.

1 Introduction

Real-time interactive apps are an important and increasingly
prominent class of distributed applications. These apps let
users manipulate a set of shared data and interact with each
other in real time. They run on modern client devices such as
smartphones, tablets, virtual reality (VR) headsets [23], and
interactive whiteboards [19], which have natural user inter-
faces with touch or gesture input and high-resolution visual
output. Some examples are collaborative drawing and design
apps, multiplayer games, messaging apps, and collaborative
office apps like Google Docs.

Three properties distinguish real-time interactive apps from
traditional distributed apps:

1. They feature small groups of users concurrently modi-
fying shared state. Users continuously respond to each
others’ actions and interleave operations.

2. They have tight responsiveness bounds for updating out-
put in response to input. Human-computer interaction re-
search has established bounds of around 100ms [20, 22],

and new devices such as VR headsets have even tighter
bounds of 7-20ms [1].

3. Clients are distributed over the wide area. Users partici-
pating in the same experience may be located in different
regions or parts of the world, and even co-located users
have client devices separated from cloud infrastructure
by high-latency last-mile network connections.

Client-side caching is an essential part of distributed stor-
age for real-time interactive apps. A cache allows these apps
to quickly access shared state and meet their responsiveness
bounds despite wide-area latencies. Unfortunately, existing
storage systems provide limited or no client-side caching,
leaving apps to construct the necessary caches themselves.
This task is difficult—apps must maintain separate copies of
shared state, and developers must reason about how to keep
those copies synchronized with the underlying storage system.
Depending on the interface provided by the storage system,
maintaining the coherence of an independent client-side cache
may even be impossible, or require developers to essentially
build a secondary storage system on top of the first one.

This paper presents Hercules, a distributed storage system
that uses client-side caching to meet the needs of real-time
interactive apps. Hercules provides simultaneous access to
multiple versions of shared state at different consistency lev-
els, called views, so that apps can expose uncertainty to users.
Its views trade off staleness for consistency, since apps need
low-latency access to all views in order to meet their respon-
siveness requirements. Finally, Hercules provides novel views
of state at the extreme ends of the staleness/consistency con-
tinuum, which are useful to apps but unsupported by existing
systems.

Our contributions in this paper are as follows:

• We identify the unique needs of real-time interactive
apps, and we identify multi-versioned client-side caching
as a means of satisfying those needs.

• We describe the design and implementation of Hercules,
a storage system that uses client-side caching to provide
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Figure 1: A sequence of screenshots from our interior design
app, showing how it exposes uncertainty to the user. In (b),
the user has just moved one of the chairs, and that change has
not yet been synchronized with the cloud or other users, so
the client highlights the chair in red.

low-latency views of shared state, including novel views
not supported by existing systems.

• We present a set of example applications that showcase
the use of Hercules’s different state views, and we evalu-
ate Hercules’s performance optimizations and recovery
protocols.

We implemented our Hercules prototype and example ap-
plications in C# on top of the AMBROSIA reliable RPC
framework [9]. Our experiments show that apps built on Her-
cules have 1.7x–9x lower operation delays than apps built on
a commercial cloud storage system, that Hercules’s batching
maintains stable performance as a deployment scales to in-
clude more clients, and that its recovery protocol allows it to
maintain liveness in the face of client failures.

2 Motivation

This section describes what real-time interactive apps need
from a distributed storage system, and it shows how existing
storage systems do not meet those needs.

2.1 The Needs of Real-Time Interactive Apps
The tight responsiveness bounds and wide-area distribution of
real-time interactive apps mean that they need a low-latency
client-side cache of shared state. This cache has three require-
ments, which we describe below.

Simultaneous access to multiple views. Multiple views of
shared state let real-time interactive apps easily expose uncer-
tainty when rendering client output. This uncertainty comes
from the fact that clients must respond to user input immedi-
ately, but that input may conflict with other users’ concurrent
actions. Apps typically handle this tension by speculatively
applying a user’s own actions right away and then correcting
the output once the storage system orders the actions and re-
solves conflicts. Some apps indicate which parts of the output
are uncertain, but implementing that functionality currently
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Figure 2: An illustration of the relationship between stale-
ness and consistency. A highly available state view cannot
be both up-to-date and strongly consistent, so each state view
represents a tradeoff between the two properties.

requires substantial developer effort, so many apps simply
treat speculative output as authoritative and risk “lying” to
the user for brief periods.

We implemented an “interior design” app as an example
of how an app can indicate uncertainty in its output. The
app lets users collaboratively design a room’s layout by mov-
ing around virtual items of furniture. The interior design app
exposes uncertainty by highlighting furniture items whose po-
sition is uncertain (i.e., items which the user has just moved),
as shown in Figure 1.

The easiest way to identify uncertainty is to compare dif-
ferent views of shared state representing different consistency
levels. However, most existing systems provide interfaces that
expose only a single state view at a time, even if they sup-
port multiple consistency levels. In order to simultaneously
access multiple state views using these systems, apps must
invoke read operations at multiple consistency levels and then
manually cache the results.

Views that trade off staleness and consistency. The tight
responsiveness bounds of real-time interactive apps mean that
they must render each output frame very quickly, within tens
of milliseconds. With those short frame times, apps cannot
afford to make long-running queries for shared state on the
output-rendering critical path.

Existing systems may provide immediate access to weakly
consistent state views, but for strongly consistent views, they
generally require apps to either perform a blocking query or
register an asynchronous callback. These systems therefore
offer a tradeoff between consistency and performance (access
latency). Real-time interactive apps cannot afford to sacrifice
access latency when rendering output, but they can tolerate
staleness when reading strongly consistent versions of state.
They need a storage system that instead exposes the tradeoff
between staleness and consistency. Figure 2 illustrates this
tradeoff.
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New, unique views. Real-time interactive apps benefit from
views of shared state that are not supported by existing storage
systems. Most existing systems provide a strongly consistent,
Authoritative state view representing the agreed-upon ground-
truth version of state at a point in time. Many systems also
provide a weakly consistent state view that includes opera-
tions that have been persisted locally on the client but have
not yet propagated to cloud storage. We refer to this view as
the Durable view. These two views alone are insufficient for
real-time interactive apps.

Due to their responsiveness needs, real-time interactive
apps need a low-latency state view that includes operations
before they are locally persisted. Modern immersive client
devices such as VR headsets have extremely tight response
bounds of 7-20ms for updating output in response to input [1],
and those bounds will decrease in the future. Apps running
on these devices cannot wait for changes to shared state to be
locally persisted before those changes are reflected in their
output. They need a view including operations that are only
stored in memory, which we call the Submitted view.

On the other end of the consistency spectrum, because real-
time interactive apps have concurrent user activity, they also
benefit from a view including only operations that other users
have received. We refer to this view as the Visible view. Many
popular apps [7, 13] provide such visibility information, but
because storage systems do not track operation visibility, apps
are left to implement this behavior themselves.

2.2 Current Systems
Widely available distributed storage systems do not meet the
requirements outlined above. Today’s real-time interactive
apps must implement the missing functionality themselves, a
difficult task made harder by the opaque interfaces of storage
systems. This section examines a popular distributed storage
system and describes the problems it presents for these apps.

Firebase Cloud Firestore [11] is a representative example
of a distributed storage system. It provides a data store orga-
nized into collections of JSON documents. Cloud Firestore
allows client apps to submit writes or transactions modify-
ing shared data, and it supports event listeners that invoke a
callback when a document or query set changes. An event
listener passes the most recent snapshot of shared data into
its callback. Cloud Firestore optimistically applies a client’s
own operations locally before sending them to the backend,
and it invokes event listener callbacks in response to those
optimistic invocations. Event listeners provide metadata that
can be used to distinguish between notifications for local and
backend events.

Apps must explicitly store operations. An app that main-
tains multiple views of shared state must model and store
app-level operations in memory, and it must implement pro-
tocols to re-compute its views using those operations when

Cloud Firestore notifies it of changes to shared state. If the
app wants to use views that lag behind the most recent version
of data in Cloud Firestore, such as the Visible view described
above, it must also store those operations in Cloud Firestore
rather than simply storing the shared state itself.

Notifications are too coarse-grained. Cloud Firestore’s
event listeners can register for changes to either a single doc-
ument or the results of a query. With only these two options,
apps cannot subscribe just to notifications for new operations.
They must instead listen to the entire set of operations, figure
out which operations are new, and act on those operations.
This requirement both adds an extra programming burden (de-
velopers must implement de-duplication logic) and reduces
performance (the entire set of operations is delivered every
time a new operation is added).

Apps must perform manual synchronization. Cloud
Firestore’s event listener callbacks execute on background
threads, while real-time interactive apps typically process in-
put and render output on a dedicated, non-blocking user inter-
face thread. Apps must therefore add synchronization logic to
ensure that event listener callbacks do not access shared state
or operation metadata at the same time as input-processing or
output-rendering methods, and they must structure the event
listener callbacks to execute without blocking, so that the
added synchronization does not cause the user interface to
block.

3 Hercules Overview

Hercules is a distributed storage system that exposes different
views of shared state to clients, where each view reflects a
particular tradeoff of consistency and staleness.

3.1 System Model
Hercules targets distributed applications with a client/server
architecture, in which users interact with client apps that sub-
mit operations to a central server, and the server maintains
the authoritative copy of shared state and fans out operations
to other clients. Although our current Hercules prototype sup-
ports a single (possibly replicated) server, Hercules could be
extended to support more sophisticated backend architectures
by modifying or adding new state views.

Hercules targets real-time interactive apps, where small
numbers of users (e.g., tens of users) continuously modify
shared state and respond to each others’ operations. Hercules
does not target distributed apps with different workloads, such
as social media services that have millions of users and take
minutes to fully propagate operations. Many of Hercules’s
techniques could be applied to these apps in a straightforward
manner, but some would require adjustment (for instance, it
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might be impractical to track which of a user’s operations are
visible to all other users).

3.2 Programming Interface

Hercules models an application’s shared state as a state ma-
chine. The state machine starts at some initial state and moves
between states according to the operations in a totally-ordered
operation log. Hercules supports two kinds of operations:
read-write operations and read-only operations. Read-write
operations can perform arbitrary deterministic computation,
but they cannot return values or externalize state, because
they are applied speculatively to some views. Read-only oper-
ations read a particular view of the state machine. Read-write
operations are stored in the operation log, while read-only
operations are unlogged.

When using Hercules, the application developer writes a
state machine class whose variables define the shared state
and whose methods define the read-write operations. Her-
cules generates a client library with two kinds of methods:
operation stubs matching the read-write operations, and a
GetState() method that returns the requested view of shared
state. Applications perform read-write operations by calling
the operation stubs, and they perform read-only operations
by calling GetState() and then directly reading from the
returned view.

3.3 Hercules State Views

The Hercules client library provides different views of the
shared state, where each view is a read-only copy of the state
machine resulting from a different operation log. The different
views trade off consistency and staleness. In this context,
staleness describes how long a client must wait for its own
operations to be included in a view; a weakly consistent view
allows operations to be inserted into the middle of its log,
while a strongly consistent view only permits operations to be
appended to the end of its log. Our Hercules design exposes
four views, in order of increasing staleness:

• The Submitted view is a weakly consistent view includ-
ing all operations that have been submitted by this client.

• The Durable view is a weakly consistent view that guar-
antees that its operations will eventually become visible
to all clients.

• The Authoritative view is a strongly consistent view that
guarantees that its operations will eventually become
visible to all clients.

• The Visible view is a strongly consistent view that guar-
antees that all of the client’s own operations contained
in it are visible to all clients.

A1 B1 A2 A3 A4

A1 B1 A2 B2

A1 B1 B2

Visible Durable

Authoritative Submitted

Global log

Client B

Client A

Figure 3: An example of the relationship between a client’s
state views and Hercules operation logs. Client A’s operations
A1 and A2 are in the global log, but only A1 is visible to
client B. Its operation A3 is guaranteed to eventually make it
into the global log, but no such guarantee applies to A4.

Each view is defined in terms of a global operation log,
which is agreed upon by all clients and which specifies the
“master copy” of shared state. Operations submitted by clients
eventually enter the global log; how exactly clients agree upon
the global log depends on the precise system architecture. A
client’s Authoritative log is a prefix of the global log, and its
Visible log is a prefix of the Authoritative log. The Submitted
log consists of the Authoritative log with all of the client’s
submitted operations appended to the end, and the Durable log
is the Authoritative log with a prefix of the client’s submitted
operations appended. Figure 3 illustrates these definitions
with an example.

These definitions result in a clean set of prefix relationships
between the views, where each view’s operation log is the
prefix of another view’s. The client’s Visible log is a prefix
of its Authoritative log, which is a prefix of its Durable log,
which is a prefix of its Submitted log.

Note that our definition of the Visible view is concerned
with the visibility of a client’s own operations. Operations
from other clients that are not yet visible to everyone may
appear in it. We found that this definition results in a view that
is intuitive to use, since users are often primarily interested in
whether their own operations are visible to others. However,
there may be situations where (for instance) Alice sees Bob’s
operation and wants to know whether Carol has also seen
that operation. In that case, a view that shows operations
from any client only if they are visible to all clients would be
useful. Such a view would fit cleanly into Hercules’s design
but would require more messages per operation.

4 Hercules Design

Hercules provides clients with views of shared state that rep-
resent different tradeoffs of consistency and staleness. In the
context of a concrete storage system, another interpretation
of the views is that each view contains operations that have
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Figure 4: The architecture of a Hercules application. Shaded
areas represent components provided by Hercules.

passed beyond a certain “radius” in the system, from the
point of view of the client. To provide those different views,
Hercules turns each operation into multiple RPCs that pro-
vide finer-grained information about the operation’s progress
through the system. The Hercules client library uses those
RPCs to derive its views.

4.1 AMBROSIA Background
Hercules is built on top of AMBROSIA [9], a distributed
runtime that provides reliable execution and in-order, exactly-
once RPC delivery across nodes. We used AMBROSIA to
build Hercules because its reliability guarantees simplify Her-
cules’s design.

AMBROSIA nodes are called Immortals; each Immortal
consists of a package of persistent state and a set of determin-
istic RPC handlers that operate on that state. An Immortal
can call RPCs on other Immortals or perform self-calls of its
own RPCs. A special type of RPC is an Impulse Handler,
which an Immortal calls on itself to accept non-deterministic
external input.

4.2 System Architecture
A Hercules deployment consists of a server program and
one or more client programs running on end-user devices.
Hercules generates the server program and a client library; app
developers write code for a client program that accepts user
input and renders output using the client library. The server
stores the global operation log. To save space, it maintains
a checkpoint copy of shared state that represents a prefix of
the global log and only explicitly stores the suffix of the log.
The server stores all of its state in durable storage, whereas
the client splits its state across durable storage and volatile
memory. Figure 4 illustrates this architecture.

The Hercules server program runs an AMBROSIA Immor-
tal, and each instance of the Hercules client library runs an

Immortal on a background thread. All communication be-
tween the server and client library happens via RPCs between
their Immortals, and each component stores its persistent state
inside of its Immortal.

In the context of Hercules’s system architecture, each view
has the following interpretation:

• The Submitted view includes all operations that have
been submitted by this client, even those that are only
stored in memory.

• The Durable view includes submitted operations from
this client that have been durably written to the client’s
local storage.

• The Authoritative view includes operations that have
been accepted and ordered by the server.

• The Visible view includes all operations up to (but not
including) the first operation from this client that has not
been delivered to all other clients.

Operations in the Submitted view may be lost if the client app
crashes, and operations in the Durable view may be lost if the
client device suffers a persistent storage failure.

4.3 Operation RPC Protocol
When a client app performs an operation, Hercules transforms
that operation into multiple RPCs that propagate it through
the system and inform the client library of its progress. The
operation propagation protocol, illustrated in Figure 5, has
the following steps:

1. The client app calls an operation stub exposed by the
Hercules client library. Once the stub call returns, the
operation is Submitted.

2. The client library calls the Make-Durable ImpulseHan-
dler RPC on itself to locally persist the operation. The
operation is now Durable.

3. The client library sends a Deliver-Operation RPC con-
taining the operation to the Hercules server.

4. The server adds the operation to its global operation log
and sends a Notify-Auth RPC to the client library. The
operation is now Authoritative.

5. The server sends Remote-Operation RPCs containing
the operation to the other clients.

6. Each other client responds with an Remote-Ack RPC.

7. Once the server has received acks from all other clients,
it sends a Notify-Visible RPC to the client library. The
operation is now Visible.

Each RPC call is asynchronous and non-blocking. At any
time, the client app can call the GetState() method to get
the client library’s current state views.
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Figure 5: The Hercules operation protocol. Dashed lines rep-
resent the client app reading updated state views from the
client library by calling the GetState() method.

4.4 Client View Computation

The Hercules client library uses the RPCs it receives to as-
semble its state views. This procedure requires some care.
This section describes the basic algorithm for computing state
views; Section 4.5 describes a version optimized for high-
throughput scenarios.

The client library maintains a persistent copy of state cor-
responding to its Visible view and transient copies for the
other views, and it saves computation by directly applying
operations to those transient copies when possible rather than
re-deriving them from scratch. Furthermore, because the full
operation log of a given state view is a prefix of the log of its
less-stale counterpart (e.g., the Authoritative log is a prefix
of the Durable log), the client library saves space by storing
operation lists that contain only the operations that are part
of one log and not its less-stale counterpart (e.g., the Durable
list holds the operations that have been persisted but have not
yet been received by the server). It uses these operation lists
to re-derive state views when necessary. Figure 6 shows the
relationship between the operation logs and operation lists.

The client library updates its state views whenever it re-
ceives an RPC from the server (summarized in Figure 7).
When the RPC notifies it about the progress of one of its own
operations, then the operation log for one of its state views
grows to be a larger prefix of its less-stale counterpart, but the
operation logs for the other state views are all unchanged. In
this situation, the client library can directly apply the opera-
tion to the affected view without changing any of the others.

However, if the RPC contains a remote operation from an-
other client, then the remote operation will be inserted into the
middle of several views’ operation logs. Whenever an opera-
tion is inserted into the middle of an operation log, the client
library must re-compute the corresponding view by starting
with a copy of its more-stale counterpart and re-applying the
subsequent operations in the log. We call this re-computation
a rebase. We can perform rebasing more efficiently by rebas-
ing multiple views at once (e.g., rebasing the Durable view
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Figure 6: An example of the correspondence between (a) the
progress of operations through Hercules, (b) the operation
logs reflected in the client library’s state views, and (c) its
operation lists used to compute those state views.

off of the Authoritative view, and then rebasing the Submitted
view off of the Durable view).

Specifically, the client library takes the following actions
when it receives RPCs corresponding to some operation O:

• Make-Durable: The Durable view changes. The client
library removes O from its Submitted list, appends O to
its Durable list, and directly applies O to the Durable
view.

• Notify-Auth: The Authoritative view changes. The client
library removes O from its Durable list, appends O to its
Authoritative list, and directly applies O to the Authori-
tative view.

• Notify-Visible: The Visible view changes. The client li-
brary removes O and any preceding operations from its
Authoritative list and directly applies those operations to
its Visible view in order.

• Remote-Operation:

– If any of this client’s Authoritative operations are
not yet Visible: the Authoritative, Durable, and Sub-
mitted views change. The client library appends O
to its Authoritative list, directly applies O to the
Authoritative view, and rebases the Durable and
Submitted views.

– If all of this client’s Authoritative operations are
Visible: all four views change. The client library
directly applies O to the Visible view and rebases
the other three views.

4.5 Client Rebase Batching
In the client view computation algorithm introduced in Sec-
tion 4.4, a client performs a rebase whenever it receives a
Remote-Operation RPC. Each rebase involves re-executing
multiple operations, so rebasing can become prohibitively
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Component RPC Caller Description
Client Make-Durable Client Persist a locally submitted operation.

Notify-Auth Server Alert the client that its operation is stored on the server.
Notify-Visible Server Alert the client that its operation is visible to all clients.
Remote-Operation Server Deliver an operation from another client.

Server Deliver-Operation Client Deliver an operation from the calling client.
Remote-Ack Client Acknowledge an operation from another client.

Figure 7: The Hercules client and server RPC interfaces.

expensive when other clients are performing operations fre-
quently, or when high latencies between the clients and the
server result in large Durable or Auth lists. As a result, the Her-
cules client supports a batched rebase mode which performs
rebases at a coarser time granularity.

When rebase batching is enabled, the client reacts to Notify-
Auth, Notify-Visible, and Remote-Operation RPCs by enqueu-
ing them in a batch list instead of performing any of the
actions described in Section 4.4. At an app-defined time inter-
val (e.g., every 200ms), the client dequeues each of the RPCs
in its batch list and modifies its operation lists in response to
each one, but it does not modify state views or perform any
rebasing. After it is done processing the batched RPCs, the
client performs a single rebase operation to refresh its state
views. Finally, it sends Remote-Ack RPCs for any remote
operations that were in the batch.

Rebase batching lowers the rate at which the client re-
freshes its state views to reflect remote operations. In ex-
change, it lowers the execution burden on the client in scenar-
ios of high system throughput. Whether an individual applica-
tion should enable rebase batching, and the precise batching
interval it should use, depends on the characteristics of the
specific application and its deployment.

4.6 Recovery from Failures

Hercules’s state views provide a range of reliability guaran-
tees. As a result, it is important for Hercules to respond to
failures correctly, recovering the reliable views and cleaning
up the unreliable views. Hercules also needs to track which
clients are active in order to prevent the Visible view from
being blocked by failed clients. AMBROSIA’s reliability guar-
antees simplify these tasks, but Hercules’s design requires
care in choosing when and how to use those guarantees.

Recovering state views. Of the four state views exposed
by Hercules, the Submitted and Durable views are potentially
affected by client failures.

Hercules makes no guarantees about the Submitted view;
its operations may be lost at any time due to transient failures.
It is this property that enables Hercules to quickly update the
Submitted view in response to user input. The client library
stores the Submitted operation list in volatile memory and

adds submitted operations to it inside of a regular method
rather than an AMBROSIA RPC. If the client program dies
and restarts, it simply clears the Submitted operation list dur-
ing recovery.

In contrast, Hercules guarantees that operations in the
Durable view will eventually be sent to the server, unless
the client suffers a persistent storage failure. It maintains this
promise by including the Durable operation list in the client
Immortal’s persistent state and only appending to it inside
of an AMBROSIA RPC. If the client app suffers a transient
failure, its recovery procedure restores its Durable operation
list, and AMBROSIA guarantees that its Deliver-Operation
RPC is eventually sent to the server. On the other hand, if the
client device’s persistent storage fails, then the operations in
its Durable operation list are lost. In this situation, the client
app would start up as a new client instance, and any opera-
tions that it successfully delivered to the server before failing
would be reflected in its Authoritative and Visible views.

The server stores its global operation log and visibility-
tracking metadata in its Immortal’s persistent state, and it
performs all modifications to that data inside of AMBROSIA
RPCs, making it robust to transient failures. The server can
use replication or another method to avoid persistent storage
failures; such a failure would require the Hercules instance to
start over from scratch.

Maintaining the visibility set. In addition to maintaining
its guarantees in the face of failures, Hercules must also ensure
that it remains useful when clients crash or disconnect. This
concern primarily affects the Visible view, which progresses
only when all clients have received a client’s operations. In
practice, defining the Visible view in terms of all clients is im-
practical when some of those clients may experience transient
connection issues or failures. As a result, Hercules defines a
visibility set containing the clients that are actively receiving
operations. It guarantees that a client’s operations in the Visi-
ble view have been delivered to all clients in the visibility set,
and it notifies clients whenever the visibility set changes.

The Hercules server detects crashed or disconnected clients
by periodically checking for clients with acks that have been
outstanding for more than some timeout interval (e.g., every
two seconds). Once the server detects a timeout, it updates
its visibility set and sends out a Visibility-Set-Change RPC

7



to every other client. It then checks every operation that is
not yet visible; if it has been acked by every client except the
just-removed client, the server marks it as visible and sends a
Notify-Visible RPC to its sender.

The server must also alert the client that it has been removed
from the visibility set (if the client is alive but suffering from
connection issues) and provide it with a way of re-joining after
it recovers. AMBROSIA’s reliability guarantees mean that a
crashed client is indistinguishable from a client with very long
RPC delays, so Hercules handles crashed and disconnected
clients with the same protocol.

When the server removes a client from the visibility set, it
sends the client a Deregister RPC. AMBROSIA guarantees
that the client will eventually receive the RPC after it restarts
or its connection improves. Upon receiving the RPC (after
it has recovered), the client immediately sends the server a
Register RPC. The server then adds the recovering client to the
visibility set, broadcasting another Visibility-Set-Change RPC,
and “catches up” the client by sending it the data required to
reconstruct its views.

In order for the server to provide a recovering client with
the data it needs to reconstruct its views, the server has to store
the right data internally. As mentioned in Section 4, the server
explicitly stores a suffix of the global operation log along
with a checkpoint copy of shared state representing the prefix
of the log. We select the checkpoint prefix to be the prefix
containing only operations that are visible to all clients. (Note
that this prefix does not necessarily correspond to the Visible
view of any client; also, note that one or more operations
in the server’s suffix list may be visible to all clients, even
though the first operation in the suffix list is not.)

To “catch up” a recovering client, the server sends the client
its copy of state, its suffix list of operations, and the sequence
number of the latest operation from the client that is visible.
The client uses these items to reconstruct its Visible copy of
state and its Authoritative and Durable operation lists.

5 Implementation

We implemented Hercules in C# on top of AMBROSIA [9].
Our Hercules prototype includes the core client library and
server logic, profiling code to measure their performance, and
a code generation program that generates the client library and
server interfaces for a particular app. We also implemented
a set of example apps used to demonstrate and evaluate Her-
cules. Our implementation consists of 3269 lines of C# code
(1982 LOC for Hercules itself and 1287 LOC for the exam-
ple apps), not counting any files that are generated by either
Hercules or AMBROSIA.

Our client library implementation differs very slightly from
the description in Section 4, in that it performs a full rebase
of all three state views upon receiving a Remote-Operation
RPC, rather than rebasing only the Durable and Submitted

SharedState submittedState = GetState(SUBMITTED);
SharedState visibleState = GetState(VISIBLE);

foreach (int id in submittedState.Items.Keys) {
Item submittedItem = submittedState.Items[id];
Item visibleItem = visibleState.Items[id];

bool highlight =
submittedItem.XPos != visibleItem.XPos

|| submittedItem.YPos != visibleItem.YPos;

DrawItem(submittedItem , highlight);
}

Figure 8: The interior design app’s output-rendering code.

views when possible. This difference makes the code simpler
at the expense of performing a bit of unnecessary work.

6 Application Case Studies

In this section, we describe some of the example apps that we
built, in order to demonstrate the benefit of Hercules’s state
views abstraction as well as to highlight the variation in the
ways different apps use that abstraction.

6.1 Interior Design App
The interior design app allows users to design the layout of a
two-dimensional virtual room. Users click and drag items of
furniture, such as tables and chairs, to move them around in
the room.

The interior design app client uses the Submitted and Visi-
ble views. It indicates to the user if the movement of an item
is not yet visible to other users by highlighting the item on-
screen. Once the item’s updated position is reflected in the
Visible view, the client changes the item’s appearance back to
normal. Figure 1 illustrates the client’s behavior.

Figure 8 shows the interior design app client’s code for
rendering output. Items in the interior design app can exist
at any point in the two-dimensional room, and it is an item’s
position itself that changes as a result of user actions, so the
interior design app uses explicit item IDs to identify differ-
ences between the state views. The client iterates over all item
IDs and checks if the position of the item with that ID differs
between the two state views. If so, it highlights the item when
drawing it.

Our implementation of the interior design app uses the Vis-
ible view to show users the ground-truth version of shared
state, but the right choice of view may differ for different
deployment scenarios. We assume that users tend to concur-
rently move around the same items, in which case they benefit
from knowing which of their operations are visible to others.
If users instead tend to move around separate groups of items,
the Authoritative view may be more appropriate, shortening

8



Figure 9: A screenshot of the chat app client, showing the
different possible message statuses.

the latency window in which they see uncertainty. Or, if users
work with separate items and use the interior design app on
reliable workstations, the Durable view could even be suit-
able. Thanks to Hercules’s interface, customizing the view
used would require modifying only a single line of code.

6.2 Chat App

The chat app provides a shared chat room. Users send mes-
sages that are appended to the log, and clients display the
most recent messages in the log. Figure 9 shows a screenshot
of the chat app client, and Figure 10 shows the client’s code
for rendering output.

The chat app uses all four state views. When displaying
messages that have been added to the Durable, Authorita-
tive, or Visible views, the client draws an icon alongside the
message to indicate its status.

The chat app takes advantage of the log structure of its
shared state to identify differences between the views. It ren-
ders the ten most recent messages in the Submitted view’s
chat log. If those messages are present in the other views, then
they will be located at the same index of the chat log in those
views. As a result, the client identifies the index of the first
message to display, checks for any messages at or after that
index in the Visible view, and renders those messages with a
“visible” icon next to them. The client then moves onto the
Authoritative view, starting at the index where it left off, and
repeats the same process, before moving onto the Durable
and Submitted views.

6.3 Spreadsheet App

The spreadsheet app provides a shared spreadsheet that users
can collaboratively edit. Each user has a cursor, which they
move with the arrow keys, and their edits affect the cell under-
neath their cursor. The client shows the position of the user’s
cursor by drawing the selected cell with a red border, and it
shows the position of other users’ cursors with a blue border.

The spreadsheet app uses the Submitted and Visible views.
The client indicates to the user when their modifications to a
cell are not yet visible to other users, by drawing the cell’s text
in red, and when their cursor movement is not yet visible, by

submittedMsgs = GetState(SUBMITTED).Messages;
durableMsgs = GetState(DURABLE).Messages;
authMsgs = GetState(AUTHORITATIVE).Messages;
visibleMsgs = GetState(VISIBLE).Messages;

// Display the 10 most recent messages
int i = submittedMsgs.Count - 10;
for (; i < visibleMsgs.Count; i++) {

DrawMessage(visibleMsgs[i], /* message */
i - firstIndex , /* position */
VISIBLE); /* status */

}
for (; i < authMsgs.Count; i++) {

DrawMessage(authMsgs[i],
i - firstIndex ,
AUTHORITATIVE);

}
for (; i < durableMsgs.Count; i++) {

DrawMessage(durableMsgs[i],
i - firstIndex ,
DURABLE);

}
for (; i < submittedMsgs.Count; i++) {

DrawMessage(submittedMsgs[i],
i - firstIndex ,
SUBMITTED);

}

Figure 10: The chat app’s output-rendering code.

(a)

(b)

(c)

Figure 11: A sequence of screenshots from the spreadsheet
app client as two users edit adjacent cells. In (b), the user has
entered a value in the “Qty” column and moved the cursor to
the “Price” column, but those actions are not yet visible to
other users. (Colors edited for better greyscale contrast.)
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SharedState submittedState = GetState(SUBMITTED);
SharedState visState = GetState(VISIBLE);
int numRows = submittedState.Cells.Length;
int numCols = submittedState.Cells[0].Length;

for (int i = 0; i < numRows; i++) {
for (int j = 0; j < numCols; j++) {

// Decide color and width of cell border
Pen borderPen = Pens.Black;
if (SelectedByMe(submittedState ,i,j)) {

borderPen = new Pen(Color.Red, 4);
} else if (SelectedByMe(visState ,i,j)) {

borderPen = new Pen(Color.Red, 2);
} else if (SelectedByOther(visState ,i,j)){

borderPen = new Pen(Color.Blue , 4);
}

// Decide color of cell text
Brush textBrush = Brushes.Black;
if (submittedState.Cells[i][j]

!= visState.Cells[i][j]) {
textBrush = Brushes.Red;

}

DrawCell(borderPen , textBrush , i, j,
submittedState.Cells[i][j]);

}
}

Figure 12: The spreadsheet app’s output-rendering code.

drawing the old cursor position with a thinner border along-
side of the updated cursor. Figure 11 shows this behavior.
Like the interior design app, the specific views used by this
app can be easily customized.

Figure 12 shows the spreadsheet app client’s code for draw-
ing the display. The spreadsheet app takes advantage of the
two-dimensional tabular structure of the shared state when
identifying differences between views. The client iterates over
each cell in the spreadsheet and figures out whether the cell
is selected by its user in the Submitted view, by its user in
the Visible view, or by another user, and draws the cell border
appropriately. To determine how to render the cell text, the
client simply checks if the cell contents differ between the
two views.

Cloud Firestore version. We built a version of the spread-
sheet app on top of Firebase Cloud Firestore [11] to compare
the Hercules programming experience with that of a popular
distributed storage system. Our Cloud Firestore version of the
spreadsheet client app required 2.4x as many lines of code
as the Hercules version (718 LOC vs. 302 LOC). The Cloud
Firestore version provides the equivalent of the Submitted,
Authoritative, and Visible views. The Cloud Firestore C# li-
brary does not provide the optimistic local invocation feature
described in Section 2, so we did not implement the Durable
view.

Most of the additional lines of code implement protocols

for maintaining the Submitted and Visible views. The Cloud
Firestore version defines in-memory representations of shared
state and operations, maintains a list of submitted operations,
and reads and writes an authoritative operation list and a set
of per-operation visibility records in Cloud Firestore. It uses
event listener callbacks to recompute its views of shared state,
mark operations as visible, and update its submitted operation
list when its operations are acknowledged by the backend.

Although our Cloud Firestore app is already much larger
than the Hercules app, it is missing several features that Her-
cules provides for free. It does not garbage-collect old oper-
ations and visibility records, it does not have the ability to
recover from a client failure, and it requires users to manu-
ally join and leave the visibility set. Furthermore, it is brittle
and less efficient than the Hercules version. Cloud Firestore
claims to only support one update per second for a given docu-
ment [10], and based on our experience, the backend enforces
that limit by arbitrarily dropping updates when updates are
too frequent. To avoid losing writes to the document holding
visibility records, we changed the client to mark operations
as visible in batches every two seconds. This change makes
the Visible view slower, and it also does not scale well—we
tested it with two clients, but a higher number of clients would
require an even longer batching period.

7 Evaluation

Our evaluation showed that Hercules’s baseline performance
exceeds that of comparable apps built on standard cloud stor-
age systems, that Hercules’s client-side batching enables it to
deliver good performance in high-throughput scenarios, and
that its recovery protocol allows the system to progress in the
presence of client failures.

For many of our experiments, we used a benchmark ap-
plication in which the shared state is a large byte array, and
clients invoke an operation that increments elements of the
array. Each client runs an open loop in which it invokes the op-
eration, calls GetState(), and then sleeps for some amount
of time. The size of the byte array, number of array increments
performed by the operation, and loop sleep interval are all
configurable parameters.

7.1 Setup

We ran our quantitative experiments on Google Compute
Engine virtual machines. We used an n1-highcpu-4 VM (4
virtual cores, 3.6 GB RAM) located in the us-west1 region
and an n1-highcpu-8 VM (8 virtual cores, 7.2 GB RAM)
located in the us-east1 region. Each VM ran Windows Server
2019. The round-trip latency between the two VMs was 67ms.
Unless otherwise noted, we ran Hercules clients on the n1-
highcpu-8 VM and the server on the n1-highcpu-4 VM.
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Figure 13: The average delay before a submitted operation in
the spreadsheet app is reflected in the client’s state views for
both the Hercules and Cloud Firestore versions.

7.2 Baseline Performance
We compared the normal-case performance of our spreadsheet
app to the Cloud Firestore version. For each version of the app,
we ran two clients, and on one of those clients, we performed a
series of inputs simulating normal user behavior, in which we
entered text in every other row in two columns. We measured
the delay between when the client submitted each operation
and when the operation was reflected in its state views.

We located our Cloud Firestore instance in the same Google
Cloud region as our Hercules server. There was no option to
locate the Cloud Firestore instance in the us-west1 region,
so for this experiment, we put the Cloud Firestore instance
in the us-east1 region, and we swapped the VMs so that the
n1-highcpu-4 VM ran all clients and the n1-highcpu-8 VM
ran the Hercules server. We used Remote Desktop to control
the client apps.

Figure 13 shows the average delay for the Hercules and
Cloud Firestore versions of the spreadsheet app, where the
averages were computed after discarding the first and last 25%
of operations. The figure only reports Authoritative and Visi-
ble delays, because the Cloud Firestore version does not im-
plement the Durable view; the average delay for the Durable
view in the Hercules app was 2.2ms.

For the Hercules app, the Authoritative delay is roughly the
RTT between the client and server, and the Visible delay is
around two times the RTT, as expected. The Cloud Firestore
app’s Authoritative delay is 1.7x higher than the Hercules
app’s delay, although this is not quite an apples-to-apples
comparison—the Cloud Firestore backend may be replicating
updates or performing other useful work with the added time.
Its Visible delay is 9x higher, due to the batching described in
Section 6 that is required to avoid dropped writes.

7.3 Effect of Client Rebase Batching
Client rebase batching allows Hercules deployments to main-
tain good performance as system load increases. Figure 14
shows how rebase batching prevents performance from col-
lapsing as a Hercules deployment expands to include more
clients. The graph plots the time to complete an experiment
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Figure 14: Effect of batching as the number of clients in-
creases. Rebase batching allows clients to cope with the
added load introduced by more clients.

in which each client submits operations and then waits for all
operations from all clients to be reflected in its Visible view.
For this experiment, we used our benchmark application, with
a 100KB shared byte array; each client submitted 1000 oper-
ations, sleeping for 20ms between each operation, and each
operation performed 500 array increments.

Without rebase batching, each individual client eventually
becomes overwhelmed as the number of incoming operations
from other clients increases. Each client must perform a re-
base before acknowledging each remote operation, so when
the time required for a rebase exceeds the rate at which clients
submit operations, a vicious cycle results, where operations
pile up in the Authoritative lists and further increase rebase
times. With rebase batching enabled, each client must execute
the operations in its operation lists at a lower, fixed frequency,
instead of every time a remote operation arrives. As a result,
performance remains stable as system load increases.

7.4 Recovery from Client Failures
Figure 15 shows how one client’s failure impacts another
client’s state views. The graph plots the delay between when
a client submits an operation and when it sees that operation
reflected in its state views. For this experiment, we ran the
benchmark application with four clients. The shared byte ar-
ray was 10KB in size, and each operation performed 1000
array increments; each client slept for 20ms between opera-
tion invocations.

At around the 20-second mark, another client is killed. The
measured client’s Visible view experiences a delay spike at
that point, as the system waits for the visibility set timeout
to kick in, but the Authoritative view is unaffected. Note that
even though there is a longer delay before updates make it
into the Visible view, the client can still read that view with
low latency.

8 Related Work

Global Sequence Protocol (GSP) [4] is a model for repli-
cated shared data that represents shared state as a sequence
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Figure 15: Effect of client failure on view staleness. When
one client fails, the measured client’s Authoritative view is
unaffected, but its operations are delayed from being applied
to its Visible view until the visibility set timeout kicks in.

of updates. Clients distinguish between a known prefix of
globally-agreed-upon updates and a pending sequence of
local updates. Hercules’s model of shared state resembles
GSP’s, and Hercules makes use of GSP’s insight that “includ-
ing application-specific update operations in the data model
is a powerful trick.” In contrast to GSP, Hercules exposes
additional sub-sequences of updates, one of which (the Visi-
ble view) requires substantial backend support, and Hercules
emphasizes providing its state views on-demand with low
latency.

The Correctables abstraction [12] introduces the concept
of executing operations on shared state with multiple consis-
tency levels and incrementally providing feedback to applica-
tions. It provides that feedback in the form of per-operation
callbacks, which we argue is the wrong abstraction. With
per-operation feedback alone, apps cannot determine which
portions of shared state reflect uncertainty. Also, if apps need
immediate access to strongly consistent snapshots of state
when rendering output, then they need to manually schedule
strongly consistent read operations in the background and
cache the results.

Bayou [25] introduces many ideas that Hercules builds
upon. It provides two views of its data store reflecting differ-
ent consistency levels, and its sample applications use those
views to expose uncertainty to users. The differences between
Hercules and Bayou result from changes in the mobile com-
puting landscape over the last several years. Bayou assumes
that network partitions are a common occurrence, and its con-
cerns with latency are limited to ensuring that clients can
make progress during partitions. In contrast, Hercules targets
an environment in which full connectivity is the normal case,
and client read latency is of paramount importance. These
assumptions motivate Hercules’s Visible and Submitted views,
respectively.

Multiple systems build on Bayou to provide flexible con-
sistency guarantees [3, 27], but these systems do not ensure
low client read latencies, and they do not provide multiple
simultaneous views of the same data item. Other systems that
provide multiple consistency levels [17, 18] similarly expose
only one view at a time.

Some systems use speculation techniques to mask network
latency and improve the responsiveness of distributed apps
in particular domains. VNC/SRD [15] adds client-side specu-
lation to a VNC remote desktop system, and Outatime [16]
applies server-side speculation and client-side error correction
to a cloud gaming system. Instead of exposing uncertainty to
users, these systems directly display a tentative view, although
Outatime includes multiple techniques for compensating for
mispredictions in the client.

Several storage systems or frameworks target distributed
mobile applications, such as Simba [8] and Diamond [28].
These systems support multiple consistency levels, but they
only provide a single view of any particular data item to ap-
plication clients, preventing them from exposing uncertainty
to users. They also require a client’s own operations to go
through durable storage before being reflected in its reads,
which risks violating the responsiveness requirements of real-
time interactive apps, and they do not provide any information
about the visibility of one client’s operations to other clients.
Other work targets distributed file systems [21, 26, 29], where
accesses are more sporadic and coarse-grained, and the focus
is on conserving bandwidth.

Many areas of active research in distributed systems are
complementary to Hercules. Geo-distributed storage systems
with strong consistency guarantees [2, 5, 14] could be used as
the backend component of a Hercules deployment, and even
systems that sacrifice consistency for performance [6] could
be used if they provide stale, strongly consistent snapshots.
On the client side, techniques from conflict-free replicated
data types [24] could minimize the computing burden by
avoiding the need to re-compute state views.

9 Conclusion

Real-time interactive apps require a client-side cache of
shared state that simultaneously exposes multiple views of
shared state, that trades off staleness for consistency instead
of latency, and that provides new views at the extreme ends
of the consistency/staleness continuum. Hercules meets these
needs with a system that is performant and robust to failures.

Hercules leaves open many avenues for future work.
Human-computer interaction research could explore which
views of shared state best fit user preferences for how dis-
tributed apps should behave. Future distributed systems work
could examine how to adapt Hercules’s state views to more
complex backend architectures, which may enable new state
views or require different types of performance optimizations.
Given that some but not all of Hercules’s features would also
be useful for traditional distributed apps, it is worth investi-
gating whether a flexible system could support both real-time
interactive apps and traditional apps, changing its guarantees
and performance characteristics depending on app require-
ments.
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